您当前的位置:首页 > 文章 > 常见十大排序算法,动图演示(Python3实现)

常见十大排序算法,动图演示(Python3实现)

作者:Java Punk 时间:2023-02-06 阅读数:424 人阅读

小编在学习了数据结构、算法分析设计、Java、Python等之后,回顾所学发现见到最多的还是各种排序算法,站在前辈的肩膀上,决定做个总结。

一、概述:

常见的排序算法基本可以分为十种(见下图),除此之外,还有结合多种算法思想基于他们的改进变种。

1. 插入排序、选择排序、交换排序:这三大类基于比较的排序算法,时间复杂度会随着优化程度在O(n^2)~O(nlogn)之间变化;

2. 希尔排序、快速排序、堆排序:它们分别代表着杰出的优化策略;

3. 归并排序:基于分治递归思想,将待排数据像二叉树一样分化至最简单的一个数排序问题,子问题合并时间复杂度可控制在O(n),不难想到整体时间复杂度取决于树的深度,即达到O(nlogn);

4. 计数排序、桶排序、基数排序:这三种线性时间排序算法本质上运用了相同的思想,先将数据按一定映射关系分组(桶),然后桶内排序,顺序输出。三种姑且称为‘桶’排序算法在分组函数使用上不同,导致分组粒度不同,带来的额外空间开销出现差异。这三种排序算法适用于数据满足一定的条件,否则额外的空间开销将无法承受。

二、算法简介及代码展示

 

1.简单插入排序

简单插入排序操作n-1轮,每轮将一个未排序树插入排好序列。

开始时默认第一个数有序,将剩余n-1个数逐个插入。插入操作具体包括:比较确定插入位置,数据移位腾出合适空位

代码如下:

def InsertSort(ls):
    n=len(ls)
    if n<=1:
        return ls
    for i in range(1,n):
        j=i
        target=ls[i]                    #每次循环的一个待插入的数
        while j>0 and target<ls[j-1]:   #比较、后移,给target腾位置
            ls[j]=ls[j-1]
            j=j-1
        ls[j]=target                    #把target插到空位
    return ls

2.希尔排序

希尔排序是插入排序的高效实现,对简单插入排序减少移动次数优化而来。

简单插入排序每次插入都要移动大量数据,前后插入时的许多移动都是重复操作,若一步到位移动效率会高很多。

若序列基本有序,简单插入排序不必做很多移动操作,效率很高。

希尔排序将序列按固定间隔划分为多个子序列,在子序列中简单插入排序,先做远距离移动使序列基本有序;逐渐缩小间隔重复操作,最后间隔为1时即简单插入排序。

代码如下:

def ShellSort(ls):
    def shellinsert(arr,d):
        n=len(arr)
        for i in range(d,n):
            j=i-d
            temp=arr[i]                     #记录要出入的数
            while(j>=0 and arr[j]>temp):    #从后向前,找打比其小的数的位置
                arr[j+d]=arr[j]             #向后挪动
                j-=d
            if j!=i-d:
                arr[j+d]=temp
    n=len(ls)
    if n<=1:
        return ls
    d=n//2
    while d>=1:
        shellinsert(ls,d)
        d=d//2
    return ls

3.简单选择排序

选择排序同样对数据操作n-1轮,每轮找出一个最大(小)值。

操作指选择,即未排序数逐个比较交换,争夺最值位置,每轮将一个未排序位置上的数交换成已排序数,即每轮选一个最值。

代码如下:

def  SelectSort(ls):
    n=len(ls)
    if n<=1:
        return ls
    for i in range(0,n-1):
        minIndex=i
        for j in range(i+1,n):          #比较一遍,记录索引不交换
            if ls[j]<ls[minIndex]:
                minIndex=j
        if minIndex!=i:                 #按索引交换
            (ls[minIndex],ls[i])=(ls[i],ls[minIndex])
    return ls

4.快速排序

快速排序基于选择划分,是简单选择排序的优化。

每次划分将数据选到基准值两边,循环对两边的数据进行划分,类似于二分法。

算法的整体性能取决于划分的平均程度,即基准值的选择,此处衍生出快速排序的许多优化方案,甚至可以划分为多块。

代码如下:

def QuickSort(ls):
    def partition(arr,left,right):
        key=left                 #划分参考数索引,默认为第一个数,可优化
        while left<right:
            while left<right and arr[right]>=arr[key]:
                right-=1
            while left<right and arr[left]<=arr[key]:
                left+=1
            (arr[left],arr[right])=(arr[right],arr[left])
        (arr[left],arr[key])=(arr[key],arr[left])
        return left
 
    #递归调用
    def quicksort(arr,left,right):   
        if left>=right:
            return
        mid=partition(arr,left,right)
        quicksort(arr,left,mid-1)
        quicksort(arr,mid+1,right)
 
    #主函数
    n=len(ls)
    if n<=1:
        return ls
    quicksort(ls,0,n-1)
    return ls

5.冒泡排序

冒泡排序对数据操作n-1轮,每轮找出一个最大(小)值。

操作指对相邻两个数比较与交换,每轮会将一个最值交换到数据列首(尾),像冒泡一样。

代码如下:

def BubbleSort(ls):
    n=len(ls)
    if n<=1:
        return ls
    for i in range (0,n):
        for j in range(0,n-i-1):
            if ls[j]>ls[j+1]:
                (ls[j],ls[j+1])=(ls[j+1],ls[j])
    return ls

6.堆排序

堆排序基于比较交换,是冒泡排序的优化。具体涉及大(小)顶堆的建立与调整。

大顶堆指任意一个父节点都不小于左右两个孩子节点的完全二叉树,根节点最大。

堆排序首先建立大顶堆(找出一个最大值),然后用最后一个叶子结点代替根节点后做大顶堆的调整(再找一个最大值),重复

以数组(列表)实现大顶堆时,从上到下,从左到右编号。父节点序号为n,则左右孩子节点序号分别为2*n+1、2*n+2

大顶堆的调整:将仅有根节点不满足条件的完全二叉树,调整为大顶堆的过程。

大顶堆调整方法:将根节点与较大一个儿子节点比较,不满足条件则交换。

                            若发生交换,将被交换儿子节点视作根节点重复上一步

大顶堆的建立:从最后一个非叶子节点开始到根节点结束的一系列大顶堆调整过程。

代码如下:

def  HeapSort(ls):
    def heapadjust(arr,start,end):  #将以start为根节点的堆调整为大顶堆
        temp=arr[start]
        son=2*start+1
        while son<=end:
            if son<end and arr[son]<arr[son+1]:  #找出左右孩子节点较大的
                son+=1
            if temp>=arr[son]:      #判断是否为大顶堆
                break
            arr[start]=arr[son]     #子节点上移
            start=son                     #继续向下比较
            son=2*son+1
        arr[start]=temp             #将原堆顶插入正确位置
 
#######
    n=len(ls)
    if n<=1:
        return ls
    #建立大顶堆
    root=n//2-1                     #最后一个非叶节点(完全二叉树中)
    while(root>=0):
        heapadjust(ls,root,n-1)
        root-=1
    #掐掉堆顶后调整堆
    i=n-1
    while(i>=0):
        (ls[0],ls[i])=(ls[i],ls[0])  #将大顶堆堆顶数放到最后
        heapadjust(ls,0,i-1)         #调整剩余数组成的堆
        i-=1
    return ls

7.归并排序

希尔排序是插入排序的高效实现,对简单插入排序减少移动次数优化而来。

简单插入排序每次插入都要移动大量数据,前后插入时的许多移动都是重复操作,若一步到位移动效率会高很多。

若序列基本有序,简单插入排序不必做很多移动操作,效率很高。

希尔排序将序列按固定间隔划分为多个子序列,在子序列中简单插入排序,先做远距离移动使序列基本有序;逐渐缩小间隔重复操作,最后间隔为1时即简单插入排序。

代码如下:

def MergeSort(ls):
    #合并左右子序列函数
    def merge(arr,left,mid,right):
        temp=[]         #中间数组
        i=left          #左段子序列起始
        j=mid+1         #右段子序列起始
        while i<=mid and j<=right:
            if arr[i]<=arr[j]:
                temp.append(arr[i])
                i+=1
            else:
                temp.append(arr[j])
                j+=1
        while i<=mid:
            temp.append(arr[i])
            i+=1
        while j<=right:
            temp.append(arr[j])
            j+=1
        for i in range(left,right+1):    #  !注意这里,不能直接arr=temp,他俩大小都不一定一样
            arr[i]=temp[i-left]
 
    #递归调用归并排序
    def mSort(arr,left,right):
        if left>=right:
            return
        mid=(left+right)//2
        mSort(arr,left,mid)
        mSort(arr,mid+1,right)
        merge(arr,left,mid,right)
 
    n=len(ls)
    if n<=1:
        return ls
    mSort(ls,0,n-1)
    return ls

8.计数排序

计数排序用待排序的数值作为计数数组(列表)的下标,统计每个数值的个数,然后依次输出即可。

计数数组的大小取决于待排数据取值范围,所以对数据有一定要求,否则空间开销无法承受。

代码如下:

def CountSort(ls):
    n=len(ls)
    num=max(ls)
    count=[0]*(num+1)
    for i in range(0,n):
        count[ls[i]]+=1
    arr=[]
    for i in range(0,num+1):
        for j in range(0,count[i]):
            arr.append(i)
    return arr

9.桶排序

桶排序实际上是计数排序的推广,但实现上要复杂许多。

桶排序先用一定的函数关系将数据划分到不同有序的区域(桶)内,然后子数据分别在桶内排序,之后顺次输出。

当每一个不同数据分配一个桶时,也就相当于计数排序。

代码如下:

def BucketSort(ls):
    ##############桶内使用快速排序
    def QuickSort(ls):
        def partition(arr,left,right):
            key=left                 #划分参考数索引,默认为第一个数,可优化
            while left<right:
                while left<right and arr[right]>=arr[key]:
                    right-=1
                while left<right and arr[left]<=arr[key]:
                    left+=1
                (arr[left],arr[right])=(arr[right],arr[left])
            (arr[left],arr[key])=(arr[key],arr[left])
            return left
 
        #递归调用
        def quicksort(arr,left,right):   
            if left>=right:
                return
            mid=partition(arr,left,right)
            quicksort(arr,left,mid-1)
            quicksort(arr,mid+1,right)
 
        #主函数
        n=len(ls)
        if n<=1:
            return ls
        quicksort(ls,0,n-1)
        return ls
 
    ######################
    n=len(ls)
    big=max(ls)
    num=big//10+1
    bucket=[]
    buckets=[[] for i in range(0,num)]
    for i in ls:
        buckets[i//10].append(i)      #划分桶
    for i in buckets:                 #桶内排序
        bucket=QuickSort(i)
    arr=[]
    for i in buckets:
        if isinstance(i, list):
            for j in i:
                arr.append(j)
        else:
            arr.append(i)
    for i in range(0,n):
        ls[i]=arr[i]
    return ls

10.基数排序

基数排序进行多轮按位比较排序,轮次取决于最大数据值的位数。

先按照个位比较排序,然后十位百位以此类推,优先级由低到高,这样后面的移动就不会影响前面的。

基数排序按位比较排序实质上也是一种划分,一种另类的‘桶’罢了。比如,第一轮按各个位比较,按个位大小排序分别装入10个‘桶’中,‘桶’中个位相同的数据视作相等,桶是有序的,按序输出,后面轮次接力完成排序。

代码如下:

import math
def RadixSort(ls):
    def getbit(x,i):                               #返回x的第i位(从右向左,个位为0)数值
        y=x//pow(10,i)
        z=y%10
        return z
    def CountSort(ls):
        n=len(ls)
        num=max(ls)
        count=[0]*(num+1)
        for i in range(0,n):
            count[ls[i]]+=1
        arr=[]
        for i in range(0,num+1):
            for j in range(0,count[i]):
                arr.append(i)
        return arr
    Max=max(ls)
    for k in range(0,int(math.log10(Max))+1):      #对k位数排k次,每次按某一位来排
        arr=[[] for i in range(0,10)]
        for i in ls:                               #将ls(待排数列)中每个数按某一位分类(0-9共10类)存到arr[][]二维数组(列表)中
            arr[getbit(i,k)].append(i)
        for i in range(0,10):                      #对arr[]中每一类(一个列表)  按计数排序排好
            if len(arr[i])>0:
                arr[i]=CountSort(arr[i])
        j=9
        n=len(ls)
        for i in range(0,n):                       #顺序输出arr[][]中数到ls中,即按第k位排好
            while len(arr[j])==0:
                j-=1
            else:
                ls[n-1-i]=arr[j].pop()   
    return ls 

调试代码

# 此处调用上面的算法,以冒泡算法为例
 
arr = [int(x) for x in input("请输入待排序数列:\n").split()]
arr = BubbleSort(arr)            
print("数列按序排列如下:")
for i in arr:
    print(i,end=' ')

1. 十个排序算法都用函数封装,函数输入整数列表,返回整数列表;

2. 测试时输入以空格间隔的整数数列,split处理input采集的字符串,再经数据类型转换后变为整数列表后调用函数;

   输出时采用循环逐个输出。

参照:https://www.cnblogs.com/yymor/p/10253527.html

来源:https://blog.csdn.net/weixin_44259720/article/details/103385439



本站大部分文章、数据、图片均来自互联网,一切版权均归源网站或源作者所有。

如果侵犯了您的权益请来信告知我们删除。邮箱:1451803763@qq.com

标签:技术算法